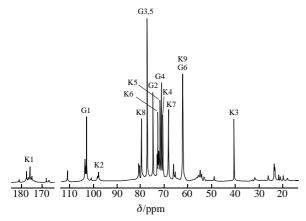
A polymer of 8-O-glucosylated 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn) in the cell wall of Streptomyces sp. VKM Ac-2090

Alexander S. Shashkov,**a Galina M. Streshinskaya,*b Larisa N. Kosmachevskaya,*b Lyudmila I. Evtushenko*c and Irina B. Naumova*b

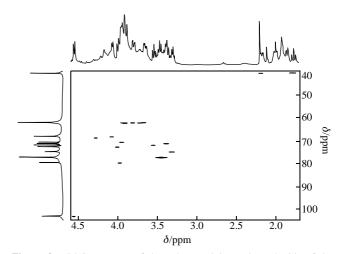
^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow, Russian Federation. Fax: +7 095 135 5328; e-mail: shash@ioc.ac.ru

10.1070/MC2000v010n05ABEH001338

The title polymer of Kdn was detected in biological object for the first time.


2-Keto-3-deoxy-D-*glycero*-D-*galacto*-nonulosonic acid (Kdn) was first found in the form of an α -2,8-linked oligomer containing 6–7 residues in rainbow trout eggs. Later, Kdn was found in heterooligosaccharides of animal tissues^{2,3} and as a constituent of the capsular heteropolysaccharide of *Klebsiella ozaenae* serotype K4.

We have detected polyKdn in the cell wall of *Streptomyces* sp. VKM Ac-2090 isolated from scab lesions potato.


The polymers were extracted from the cell wall as described previously,⁵ and their structure was examined using NMR spectroscopy.

The 13C NMR spectrum of the polymers (Figure 1) displayed the Kdn-containing polysaccharide as the major cell wall anionic polymer, along with several glycerol teichoic acids. The ¹H and ¹³C NMR spectra of the predominant component of the polymer mixture were completely assigned using 2D homonuclear ¹H/¹H COSY, TOCSY and ROESY and heteronuclear ¹H/¹³C HSQC (Figure 2) and HMBC experiments. The residue of nonulosonic acid was identified with Kdn in accordance with the coupling constants in the ¹H NMR spectrum.⁶ The upfield chemical shift of H-3_{eq} (2.205 ppm) was in agreement with the β -configuration of the Kdn residue.⁴ The second sugar residue in the disaccharide repeating unit of the polymer was identified as the terminal β -glucopyranose (β -Glcp) based on the chemical shifts and coupling constants of the ¹H and ¹³C NMR spectra. The ROESY spectrum (Figure 3) revealed correlation peaks for the anomeric protons of Glcp and H-8, H-9 and H-9' of Kdn.

The upfield chemical shift of C-9 and the downfield chemical shift of C-8 in the Kdn residue in comparison with that of non-substituted sugar (Table 1) allowed one to conclude that β -Glcp was bonded with Kdn by the 1 \rightarrow 8 linkage. The presence of a correlation peak of H-1(Glcp)/C-8(Kdn) in the HMBC spectrum is consistent with this conclusion, too. The downfied shift of C-4 by 2 ppm in the 13 C NMR spectrum of the β -Kdn residue

Figure 1 ¹³C NMR spectrum of the polymers of the cell wall of *Streptomyces* sp. VKM Ac-2090. Designations refer to the numbers of carbon atoms in the Kdn (K) and glucopyranose (G) residues.

Figure 2 HSQC spectrum of the Kdn-containing polysaccharide of the cell wall of *Streptomyces* sp. VKM Ac-2090. The corresponding parts of the ¹H and ¹³C NMR specta are displayed along the horizontal and vertical axes, respectively.

Table 1 1 H NMR data (D₂O, 303 K, acetone: 2.225 ppm) for β -Kdn⁶ and for the polysaccharide of *Streptomyces* sp. VKM Ac-2090 cell wall.

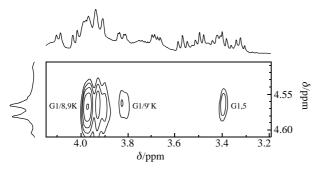

Residue	Chemical shifts, δ/ppm and coupling constants, J/Hz									
Residue	H-3 _{ax}	H-3 _{eq}	H-4	H-5	H-6	H-7	H-8	H-9	H-9'	
β-Kdn ⁶	1.80 J _{3a,3e} 12.0	2.23 J _{3e,4} 5.0	4.02 J _{3a,4} 12.0	3.56 J _{4,5} 9.0	4.01 J _{5,6} 9.0	3.88 J _{6,7} 1	3.73 J _{7,8} 8.5	$J_{9,9'}$ 11 $J_{8,9}$ 5.5	3.88 J _{8,9} , 2	
→4)-β-Kdn (2→8)		2.20 J _{3e,4} 5.0	3.98 J _{3a,4} 12.3	3.57 J _{4,5} 9.6	4.02 J _{5,6} 9.6	4.09 J _{6,7} 1.2	3.99 J _{7,8} 8.5	$J_{9,9'}$ 12.5 $J_{8,9}$ 3.1	3.83 <i>J</i> _{8,9} , 3.9	
1	H-1	H-2	H-3	H-4	H-5	H-6	H-6'			
β-Glc <i>p</i> -(1	$J_{1,2}$ 7.9	3.33 <i>J</i> _{2,3} 8.8	3.50 J _{3,4} 8.8	3.38 J _{4,5} 8.7	$J_{5,6}$ 1.7	3.82 J _{6,6'} 12.1	3.68 <i>J</i> _{5,6'} 5.7			

Table 2 13 C NMR data (D₂O, 303 K, acetone: 31.45 ppm) for β -Kdn⁶ and for the polysaccharide of *Streptomyces* sp. VKM Ac-2090 cell wall.

Residue	Chemical shifts, δ/ppm									
	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	
β-Kdn ⁶	174.2	96.02	39.19	68.51	70.67	71.06	69.27	72.29	63.86	
→4)-β-Kdn-	176.0	97.9	40.5	70.5	71.7	72.6	68.05	79.5	61.9	
(2→8)										
†										
β -Glc p -(1	102.8	74.7	77.1	71.1	77.1	61.9				

^b Department of Biology, M. V. Lomonosov Moscow State University, 119899 Moscow, Russian Federation. E-mail: i_naumova@mail.ru

^c Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russian Federation. Fax: +7 095 923 3602; e-mail: evtushenko@ibpm.serpukhov.su

Figure 3 Part of the ROESY spectrum of the Kdn-containing polysaccharide of the cell wall of *Streptomyces* sp. VKM Ac-2090. The corresponding parts of the ¹H NMR spectum are displayed along the horizontal and vertical axes. Designations refer to the numbers of protons in the Kdn (K) and glucopyranose (G) residues.

compared to that of non-substituted β -Kdn revealed the $2\rightarrow 4$ linkage for the polysaccharide chain. The signals of the terminal monosaccharide residues were not detected. This fact allows us to suggest a high molecular mass of the polymer. Both of the comparable NOE correlation peaks H-1(Glcp)/H-8(Kdn) and H-1(Glcp)/H-9(Kdn) (Figure 3) and relatively large in module negative β -effect of glycosylation for C-9 of the Kdn residue were in agreement with the D-glycero-D-galacto-configuration of Kdn on the assumption of the β -D-configuration of the glucopyranose residue^{7,8} 1.

Until now, a polymer of Kdn has been found neither in procaryotic nor eucaryotic cells.

The β -configuration of the glycoside bond in this natural sugar has not been reported previously. This communication is the first report on the polyKdn with the β -configuration of the glycoside bond.

This work was supported in part by INTAS (grant no. 96-1571) and the Russian Foundation for Basic Research (grant no. 98-04-49277).

References

- D. Nadano, M. Iwasaki, S. Endo, K. Kitajima, S. Inoue and Y. Inoue, J. Biol. Chem., 1986, 261, 11550.
- 2 M. Muhlenhoff, M. Eckhardt and R. Gerardy-Schahn, Curr. Opin. Struct. Biol., 1998. 8, 558.
- 3 F. A. Troy, Glycobiology, 1992, 2, 5.
- 4 Yu. A. Knirel', N. A. Kocharova, A. S. Shashkov, N. K. Kochetkov, V. A. Mamontova and T. F. Soloveva, *Carbohydr. Res.*, 1989, **188**, 145.
- 5 Yu. M. Kozlova, G. M. Streshinskaya, A. S. Shashkov, L. I. Evtushenko and I. B. Naumova, *Biokhimiya*, 1999, 64, 805 [*Biochemistry (Engl. Transl.*), 1999, 64, 671].
- 6 C. Auge and C. Gautherton, J. Chem. Soc., Chem. Commun., 1987, 859.
- 7 G. M. Lipkind, A. S. Shashkov, S. S. Mamyan and N. K. Kochetkov, *Carbohydr. Res.*, 1988, **181**, 1.
- 8 A. S. Shashkov, G. M. Lipkind, Yu. A. Knirel and N. K. Kochetkov, *Magn. Reson. Chem.*, 1988, **26**, 735.

Received: 8th June 2000; Com. 00/1664